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Abstract
Well known Bethe strings, such as those in spin chains, the δ-electron gas, and
the Hubbard and t–J models, are shown to be imprecise, while their consistent
refinement along with a new non-Bethe r-string is discovered. A connection
with earlier results is established and the string hypothesis problem is discussed
in the light of the present findings .

PACS number: 03.65.Ge, 75.10.Jm, 05.90+m, 11.55.Ds

A new direction in physics, namely the theory of exactly solvable quantum systems, opened
up following the classic work of Bethe [1]. Though Bethe’s objective was to solve exactly the
eigenvalue problem of the Heisenberg spin chain only, this XXX spin- 1

2 model proved to be a
generic one, and almost the same Bethe ansatz or its nested extensions to include particles with
more degrees of freedom, e.g. electrons, were found to be applicable to a number of important
models in condensed matter physics as well as in quantum field theory (see [2]). The celebrated
Bethe ansatz assumes a specific form for the eigenvectors having parametric dependence on
rapidity variables, which in turn are to be determined from specified equations known as the
Bethe ansatz equations (BAE). Bethe also proposed a special type of complex solutions for
BAE at the thermodynamic limit in the form of a string, known as the Bethe string. He showed
further that such strings form a complete set by proving that their total number, together with
the real roots, give exactly the required number of Bethe ansatz states. These Bethe string
solutions have played an important role in all the Bethe ansatz solvable fundamental integrable
models such as spin chains [3,4], the δ-function electron gas [5,6], the Hubbard model [7,8],
the supersymmetric t–J model [9, 10], etc. The string solutions correspond to the bound
states and describe excited states of the models. A popular conjecture, known as the string
hypothesis, assumes that all complex solutions of BAE at the thermodynamic limit must be
of the Bethe string type. although this conjecture has never really been proved, it has been
applied successfully to all the above models for calculating important physical quantities like
energy, entropy, pressure, magnetization, etc, through the thermodynamic Bethe ansatz (TBA).
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However, in the early eighties some criticisms started appearing in this success story of the
Bethe string when, in a series of studies, the string hypothesis apparently failed and, instead of
the Bethe strings, non-Bethe complex solutions were reported to appear as close-roots in the
form of quartets and 2-strings and as wide-roots with no restriction on their forms [11–14]. In
a subsequent paper [15], an upper bound Re(λl) � √

N on Bethe string roots was identified,
beyond which significant deformation of strings was reported [16].

Despite these major criticisms of the string hypothesis, strangely enough no significant
attention was given in subsequent years towards understanding or resolving this problem, and,
as far as we know, the consistency of the Bethe string form itself has never been questioned
before. Therefore, it is even more surprising for us to find that the well known Bethe string
for all the fundamental models mentioned above, widely quoted and used for so many years,
is in fact not a precise solution to the BAE even within its validity range and for large N .
Having noted this, we are able to obtain here the precise and consistent form of the Bethe
string by refining its correction terms, which therefore should replace the accepted string
forms presented in a series of celebrated works [1, 3–10] dealing with the fundamental spin
and electron models cited above. Moreover, we have discovered a new non-Bethe string with
arbitrary r roots, compatible with the earlier observations. Based on the explicit forms of
two kinds of strings, one could compare therefore their singularity structures appearing in
the BAE, the energies of the states formed by them and hopefully all other thermodynamic
quantities, which should contribute towards the solution of the longstanding problem of the
string hypothesis.

Let us start by checking first the known Bethe string as solutions to the respective BAE at
the thermodynamic limit. In all the spin and electron models mentioned above, the same BAE
are obtained by both the coordinate and the algebraic Bethe ansätze, though in the former they
are generated as a consequence of the periodic boundary condition on the wavefunctions [1],
while in the later as the analyticity condition for eigenvalues of the transfer matrix [17]. The
XXX spin- 1

2 chain being a generic model, we intend to examine its solutions in more detail and
draw conclusions about the other models by analogy.

XXX spin chain. The BAE for this model may be given as

V N1/2(λl) =
∏
n�=l
V1(λl − λn) l = 1, . . . , r Vα(λ) ≡ λ + iα

λ− iα
. (1)

The well known Bethe string (BS) solution to the above BAE, valid for large N , is usually
given by

λ
(BS)
l = λ0 + iη

(
l − r + 1

2

)
+ iO(e−αN) l = 1, . . . , r α > 0 (2)

with η = 1. This form of solution suggests that exponentially small corrections O(e−αN)
are needed for large values of N , which presumably are of the same order due to the same α
parameter appearing for all the roots. At N → ∞ therefore, all corrections in (2) must vanish
making it an apparently exact solution [17, 18]. Note that conjugate roots are included in (2)
with λ∗

l = λr+1−l , l = 1, . . . , s, where s = r
2 for r even and s = r−1

2 for r odd.
To follow the idea of this solution, we note that any complex solution with Im(λ) < 0

always makes |V1/2(λ)| < 1, which can be proved for the Bethe string with l � s by inserting
the explicit form (2) with arbitrary r:

∣∣V1/2
(
λ
(BS)
l

)∣∣ =
∣∣∣∣∣
(
λ0 + i(l − r

2 )

λ0 + i(l − r+2
2 )

)∣∣∣∣∣ = (1 + κl)
−1/2 ≡ e−vl < 1 (3)
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due to

κl = r + 1 − 2l

λ2
0 + ( r2 − l)2 > 0.

Consequently, for large values of N the LHS of the BAE (1), i.e. V N1/2(λ
(BS)
l ) ∼ O(e−vlN ),

must always vanish exponentially. Therefore for the Bethe string to be a consistent solution,
the RHS must also contain an exponentially vanishing factor of the same order of smallness.
By direct check one sees easily that in the simplest cases of r = 2, 3 this condition is fulfilled
and hence, the Bethe string satisfies (1) for large N, as shown explicitly in [17–19].

However, though at this point it might seem natural to assume that the same argument
must apply for any arbitrary r [17, 18], we will see by direct insertion that this analogy fails
here and the RHS as such becomes inconsistent for the string form (2) starting from r = 4.
One finds that among the factors in the RHS, one with the next higher root gives for the Bethe
string (2)

V1
(
λ
(BS)
l − λ(BS)

l+1

) = V1
(− i +O(e−αN)

) ∼ O(e−αN)

an exponentially small term. One can immediately notice, however, that, for l > 1 and r � 4,
another singular factor appears from the adjacent lower root yielding an exponentially large
term having the same order:

V1
(
λ
(BS)
l − λ(BS)

l−1

) = V1
(

+ i +O(e−αN)
) ∼ O(eαN)

while the rest of the factors coming from other roots give only finite contributions. Multiplying
all these factors we finally get the RHS of (1) as O(e−αN)O(eαN) ∼ O(1) which, however,
has a finite limit contradicting the vanishing LHS. Therefore we see that for all roots λ(BS)

l ,

with l = 2, . . . , r−1 and r � 4, having two adjacent neighbours λ(BS)
l±1 , the well known string

form (2), as such, is not a consistent solution of the BAE (1), except only for the end-roots
l = 1, r and the real root, which cover also the cases r = 2, 3. For example, for r = 4, as
worked out in our preliminary report [19], the above string form holds for the end-roots with
l = 1, 4, but not for the roots with l = 2, 3.

XXZ spin chain. The BAE take the same form as in the XXX spin chain: Ṽ Nη/2(λl) =∏
n�=l Ṽη(λl − λn) but through a redefined function Ṽα(λ) ≡ sin(λ+iα)

sin(λ−iα) , and the well known

string solution for λ(BS)
l can be given again by (2) [3]. Skipping the details, we mention only

that since the functions sinh x and x behave similarly at small x, the above reasoning for the
XXX string is paralleled in this case and one encounters a similar mismatch for its standard
string form.

Repulsive δ-function electron gas. For this and all other electron models considered below
an additional set of rapidity variables is needed. The BAE is therefore extended to include
another set of equations

Ne∏
j

Vc/2(λl − kj ) =
∏
n�=l
Vc(λl − λn)

though its structure is very similar to (1) and the string solution for λl is given in the same
form (2) with η = c > 0 and {kj } real [5, 6]. Since here the kj ’s are real, for complex λ(BS)

l

with l � s, the LHS becomes a product of terms each being < 1. Therefore, for the string
solutions at large Ne, one gets a vanishing LHS, while the RHS having exactly the same form
as in (1) remains finite as argued above.
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Hubbard model. The additional BAE exhibit a very similar structure to the above electron
model giving

Ne∏
j

VU/4(λl − sin kj ) =
∏
n �=l
VU/2(λl − λn).

However, in this case along with the string solutions for {λl, λ′
n} in the form (2) with η = 1

2U ,
M ′ pairs of solutions from {kj } can also be of string type satisfying k±

n − λ′
n = ∓ 1

4 iU ,
n = 1, . . . ,M ′ [7]. Note that in spite of k±

n being complex, due to the presence of their
conjugates also in the factors of the LHS, any complex string root for λl , l � s, will make the
factors < 1. Therefore for Ne → ∞ the LHS → 0, while the RHS, due to its same form as in
the above discussed cases, gives a finite contribution for r � 4.

Supersymmetric t–J model. For a particular (BBF) type of excitations [10], one set of BAE
takes the form

V N1 (λl)
∏
β

V1(λl − γβ) =
∏
n �=l
V2(λl − λn).

The string solutions for λl are given again by (2) with all γβ’s real [10]. Noting the first factor
in the LHS to be the same as in the XXX case and {γβ} being real, we conclude as before that
the LHS → 0 forN → ∞. The RHS, however, again being the same as in the XXX case, gives
non-vanishing terms, starting from r � 4.

As we see from the above arguments, the mismatch of the well known Bethe string form
(2) is due to its imprecise correction terms. We therefore propose the consistent and precise
form of the Bethe string (PBS) as

λ
(PBS)
l = λ0 + i

(
l − r + 1

2

)
+ iO(e−αlN ) l = 1, . . . , s and λr+1−l = λ∗

l (4)

provided the exponential orders in its correction terms are fine tuned as a strictly growing
sequence

0 < α1 < · · · < αl < αl+1 < · · · < αs with αl − αl−1 = vl = 1
2 ln(1 + κl) > 0 (5)

with κl as defined in (3). Note that the term O(e−αlN ) in (4) stands for the terms like cle−αlN

with l-dependent multiplicative constants cl . The essential point in proving the validity of this
refined Bethe string is that, unlike the known form (2), the adjacent roots now contribute zeros
and poles of different orders of smallness in the RHS of the BAE, since

V1
(
λ
(PBS)
l − λ(PBS)

l+1

) = O(e−αlN )−O(e−αl+1N) ≈ O(e−αlN )

while

V1
(
λ
(PBS)
l − λ(PBS)

l−1

) = (
O(e−αlN )−O(e−αl−1N)

)−1 ≈ O(eαl−1N)

using the strict inequality (5). Therefore the RHS becomes O(e−αlN )O(eαl−1N) ∼ O(e−vlN ),
i.e. consistent with the LHS, which has the same vanishing limit as before. It is important
to note that, contrary to its known form (2), the correction terms present in the proper Bethe
string (4) are rather complicated with simultaneous involvement of small terms of all different
orders and none of them can be neglected from the beginning, even at N → ∞.

We emphasize again that, the XXX spin chain being a generic case, the same consistent
Bethe string (4) with refinement (5) will be equally valid for all fundamental integrable models
discussed above and should therefore replace the corresponding well known and widely used
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Bethe strings appearing in related works cited above. Curiously, however, this seems not
to affect string-based physical results obtained through the TBA. The TBA method [3, 5]
apparently needs not the solution of an individual BAE, but the solution of a product of several
BAEs with different roots for the same string:∏

α

V N1/2(λ
(1)(BS)
α ) =

∏
α,j

V1(λ
(1)(BS)
α − λ(2)(BS)

j ).

Note that since the complex conjugate of each root is also present in the product, its LHS
remains finite even for large N and therefore the standard string solutions hold for such a
product-BAE. Therefore, despite being of imprecise form for the individual BAE, the known
Bethe string is fortunately capable of producing correct TBA results.

Nevertheless, the precise form of the Bethe string we find here is important not only as
a consistent form of solution for the BAE but also for its possible comparison with a non-
Bethe solution. For comparison one also needs an explicit non-Bethe string with arbitrary r
roots, which, however, is not available in the literature. We therefore propose as well a new
non-Bethe string (NBS) solution to the BAE (1) in the form

λ
(NBS)
l = λ0 + i

1

s

(
l − r + 1

2

)
+ iO(e−αN) l = 1, . . . , r α > 0 (6)

with s = 1
2 r for even r and s = 1

2 (r−1) for odd r . Note that the correction terms in (6) are much
simpler compared with the Bethe case and moreover they can be regulated by the background
real roots, the presence of which is essential, as we see below, for the survival of the non-Bethe
strings. For simplicity we consider only the case of even r; the odd r case can be handled in a
similar way. It is easy to check that each root λ(NBS)

l with l � s for string (6) yields as before the
LHS = O(e−vlN ), now with vl = 1

2 ln(1+κl), κl = 1
D
(r+1−2l),D = 1

2 r(λ
2
0+ 1

r2 (2l−1− 1
2 r)

2),

while the RHS having only one partner, λ̃(NBS)
l = λ

(NBS)
l+s , contributes also with a vanishing

term of the order V1(λ
(NBS)
l − λ̃(NBS)

l ) = O(e−αN). However, this apparent consistency breaks
down if we consider the product of this equation with that of its partner, giving in the LHS
again an exponentially vanishing term |V1/2(λ

(NBS)
l )V1/2(λ̃

(NBS)
l )|N ≈ O(e−(vl−vl+s )N ) for large

N and l < 1
4 (2 + r) ≡ l∗. For l > l∗ this term similarly blows up exponentially. However,

one finds now that the singular terms in the corresponding RHS are mutually cancelled due to
opposite but equal contributions from the lth root and its partner, i.e. the (l + s)th root, which
therefore leads the RHS to a finite limit and thus to a contradiction. Therefore we conclude
that, unlike the Bethe case, such non-Bethe strings cannot survive in isolation and must be
coupled with background real roots, which can make ansatz (6) consistent by supplying the
necessary vanishing (exploding) terms in the RHS. This also shows perhaps at the microscopic
level why the non-Bethe strings were observed earlier only for the aniferromagnetic ground
state (AFGS) [12]. To demonstrate this we couple (6) with M number of real roots {νa} and
notice that, due to the appearance of additional terms like

∏M
a |V1(λ

(NBS)
l − νa)| in the RHS

for the lth root of the string, a new exponentially diminishing (increasing) term may arise and
since each of its constituent terms are either < 1 or > 1, by multiplying them one gets the
contribution fromM number of such terms asO(exp(−∑M

a φla)), where φla = 1
2 ln(1 + κla),

with κla = 1
D̄
(r + 1 − 2l), D̄ = r

4 ((λ0 − νa)2 + 1
r2 (2l − 1)2). Therefore, for large M there

appears now a possibility to compensate for the singular term arising in the LHS of the product
BAE mentioned above and thus to resolve the controversy for the existence of strings like (6).
The exact values of νa should in fact be determined self-consistently from the BAE. However,
this is difficult to achieve in practice for large values of M,N , even numerically and such
strings can exist only for large N,M . Therefore we make here only some estimates to show
the right trend. Since the product of the BAEs for the lth root with its partner leading to
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(a) (b)

Figure 1. Arrangement of roots in string solutions with r = 7. (a) Non-Bethe string with
length L(7) = 6& = 2i represents a close-root form and breaks up into a quartet with
{λ2, λ̃2(= λ5), λ

∗
2(= λ6), λ̃

∗
2(= λ3)} and a triplet with {λ1, λ̃1(= λ4) = λ̃∗

1, λ
∗
1(= λ7)}. (b)

Bethe string with length L(7) = 6& = 6i in the wide-root region cannot break up into smaller
units since each root has two partners, each of which in turn has a different partner.

a contradiction for the isolated NBS is our main concern, we observe first that each of the
additional terms in its RHS, e.g. e−(φla−φ(l+s)a ) exhibits diminishing (increasing) trend also for
l < l∗(l > l∗), matching exactly with the behaviour of the LHS established above. This shows
at least qualitatively that for the NBS the coupling with real roots can indeed yield necessary
singular terms in the RHS that might match such terms appearing in the LHS. To obtain further
quantitative estimates we have checked numerically the ratios of the singular terms arising
in both the LHS and RHS and sought the real solutions of νa when they match. We find in
particular that for various values of r and l there always exists a pair of real solutions for
νa to the relation e−2(vl−vl+s ) ≈ e−(φla−φ(l+s)a ) taking one positive and another negative value.
For λ0 = 0, for example, we get νa placed symmetrically around the origin, which gives
the total momentum of the system: P = 2π × integer, in agreement with the translational
invariance of the system. Therefore for M = N

2 and a distribution of νa’s having the same
order of magnitude, one is likely to match the singularities in both sides of the BAE allowing
the NBS (6) to exist. Note that in the thermodynamic limit this distribution of real roots should
correspond to the AFGS and the NBS should correspond to the earlier non-Bethe string results
observed also over the AFGS [11–14].

Now we focus on some interesting properties of NBS (6) and show its further resemblance
to earlier observations. Firstly, we notice that due to the reduced inter-root distance& = i

s
its

length L(r) = i (r−1)
s

is bounded as 1 � |L(r)| � 2 and in contrast to the Bethe string exhibits
therefore a close-root form, which is in accordance with the earlier observations. It is also
evident that together with each root (λl) its partner (λ̃l), its conjugate (λ∗

l ) and the partner of
its conjugate (λ̃∗

l ) form a closed unit of four and being decisive contributors to the equation
at large N , become almost independent entries at the thermodynamic limit. These groups of
four may also get reduced to form a doublet or a triplet due to possible degeneracies (see
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Figure 2. Comparison of energies for r = 1, 2, . . . , 10: E(BS)
r corresponding to the r-Bethe string,

E
(NBS)
r to the r-non-Bethe string, and E(free)

r to the r free magnons, showing both strings as bound
states with E(free)

r � E
(NBS)
r � E

(BS)
r .

figure 1). However, this can occur only once, and that also when r is not divisible by 4. Thus
the close-root string (6) may split up into units of four, three and two at the thermodynamic
limit, reproducing again the non-Bethe structures observed earlier. Moreover, we see that for
each of the roots with l < l∗, which corresponds to |Im(λl)| > 1

2 , its partner λ̃l is always with
|Im(λ̃l)| < 1

2 . This fact also mimics amazingly the observation of [13] stating that the close
roots of type I must have their partners from among the close roots of type II.

Due to such striking agreement with earlier studies, we hope that the more general
non-Bethe string structure (6) should survive also in the thermodynamic limit and should
be consistent with the integral equations derived earlier for the complex roots in the anti-
ferromagnetic case. The precise and explicit forms of the general Bethe (PBS) (4) and non-
Bethe (NBS) (6) r strings found here should also be useful for comparing their corresponding
properties. As we have noticed, their correction terms induce a different nature of singularity
structures in the BAE at large N . Generically roots of the Bethe string (PBS) (4) produce
zeros and poles of different orders of smallness in the BAE, arranged in a growing sequence
and the roots are located mostly in the wide-root region: |Im(λl)| > 1. The non-Bethe string
(NBS) (6) on the other hand, allows the singularities of its roots to be of the same order of
smallness and the roots themselves are concentrated only in the close-root region. Therefore,
if one looks for the complex roots of the BAE at the AFGS with their singularities having the
same order in the whole complex plane, then among the string solutions only the close-root
NBS are likely to appear, which supports the earlier findings. Similarly the energies of the
states created by Bethe and non-Bethe r-strings can also be compared using their explicit forms
giving, respectively,

E(BS)
r = r

λ2
0 + ( r2 )

2
and E(NBS)

r =
s∑
j=1

2gj
λ2

0 + g2
j

where the factor gj = g1 − 1
s
(j − 1), with g1 = 3

2 for odd r and g1 = 3
2 − 1

2s for even r .
One can show analytically for r → ∞ and numerically for finite r (see figure 2) that E(BS)

r is
always lower than E(NBS)

r , while both have lower values than that of the r-free magnons:

E(free)
r = r

λ2
0 + 1

4

.
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Therefore one concludes that, though both Bethe and non-Bethe strings may give bound states,
the non-Bethe ones must be more loosely bound with higher energies. At this stage, however,
conclusive statements are still difficult to make regarding the string hypothesis problem. One
perhaps should consider the TBA analysis using the general r-NBS over the AFGS, which we
leave as a future problem.

I would like to thank Professor Deepak Dhar and Professor Andreas Klümper for stimulating
discussions. I also acknowledge with thanks the hospitality of the Institute for Theoretical
Physics, Dortmund University, where this work was completed and both financial and other
support from the AVH Foundation, Germany.
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